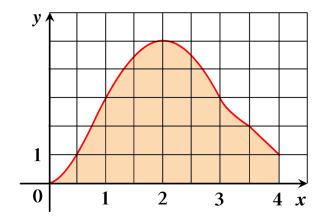

In the following problems L_n represents a left endpoint approximation, R_n represents a right endpoint approximation, M_n represents a midpoint approximation, T_n represents a trapezoidal approximation, and S_n represents a Simpson's approximation where n is the number of subintervals.


- 1) Let $I = \int_0^4 f(x) dx$, where f is the function whose graph is shown.
 - a) Use the graph to find L_2 , R_2 , and M_2 .
 - b) Are these underestimates or overestimates of I?
 - c) Use the graph to find T_2 . How does it compare with I?
 - d) For any value of n, list the numbers L_n , R_n , M_n , T_n , and I in increasing order.

- 2) The left, right, Trapezoidal, and Midpoint Rule approximations were used to estimate $\int_0^2 f(x) dx$, where f is the function whose graph is shown. The estimates were 0.7811, 0.8675, 0.8632, and 0.9540, and the same number of subintervals were used in each case.
 - a) Which rule produced which estimate?
 - b) Between which two approximations does the true value of $\int_0^2 f(x) dx$ lie?

3) Estimate the area under the graph in the figure by using the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule, each with n = 4.

4) Estimate $\int_0^1 \cos(x^2) dx$ using the Trapezoidal Rule and the Midpoint Rule, each with n = 4. From a graph of the integrand, decide whether your answers are underestimates or overestimates. Between which two approximations does the true value of $\int_0^1 \cos(x^2) dx$ lie?

Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.)

5)
$$\int_0^{1/2} \sin(x^2) \, dx, \quad n = 4$$

6)
$$\int_{1}^{2} e^{1/x} dx$$
, $n = 4$

7)
$$\int_0^3 \frac{1}{1+y^5} dy, \quad n=6$$

8) For the integral $\int_0^2 e^{-x^2} dx$ find the following:

- a) Approximations T_{10} and M_{10} .
- b) Estimate the errors in the approximations of part a).
- c) How large do we have to choose n so that the approximations T_n and M_n to the integral in part a) are accurate to within 0.00001?

9) Use the following data to answer the following:

X	f(x)
0.0	6.8
0.4	6.5
0.8	6.3
1.2	6.4
1.6	6.9
2.0	7.6
2.4	8.4
2.8	8.8
3.2	9.0

a) Use the Midpoint Rule to estimate the value of the integral $\int_0^{3.2} f(x) dx$.

b) If it is known that $-4 \le f''(x) \le 1$ for all x, estimate the error involved in the approximation in part a).